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ABSTRACT

This paper addresses the extraction of parametric information in
an audio coder that uses the MDCT filter bank. The computation
of the filter bank is reformulated as a function of the Odd-DFT, in
order to allow the estimation of the frequency, the phase and the
magnitude of stationary sinusoids. Closed expression delivering
accurate estimates are derived and explained, and their implemen-
tation and accuracy are illustrated in a Web page that includes a
demonstration Matlab M-file.

1. INTRODUCTION

A frequent problem in the areas of analysis, modification and cod-
ing of high-quality audio signals consists in the accurate estima-
tion of the frequency, phase and magnitude of stationary sinusoids.
Specifically, given a discrete sinusoid of the form:
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where A is the magnitude, � and 	� are respectively the integer
part and the fractional part of a DFT-type frequency bin scale, and
� is the initial phase, we want to develop a technique allowing the
accurate estimation of all these four parameters, after the signal has
been windowed by a real function 	��� of size� , and transformed
to a complex frequency domain using a N-channel uniform filter
bank.

This problem is particularly acute when due to efficiency rea-
sons and real-time requirements, the analysis framework underly-
ing the estimation technique is constrained to share the same anal-
ysis/synthesis scheme used for signal coding or modification. This
is the scenario assumed in this paper as it derives from the need to
implement parametric signal analysis and coding within a percep-
tual audio coder [1] that uses a 50% overlap MDCT filter bank [2].
This fact explains other desired constraints:

� the estimation technique must use only the information re-
sulting from a complex transformation on a frame-by-frame
basis, without relating interframe information,

� the technique should be capable of superresolution i.e., the
accuracy of the frequency estimate should be finer than the
discrete frequencies corresponding to the spectral lines (or
bins) of the complex transform, which is represented by the
fractional frequency parameter 	�,
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� in order to reach high accuracy, the technique should take as
much advantage as possible of the specificity on the analy-
sis filter bank in detriment of more general but less accurate
techniques such as the ”quadratic fit” [3].

A technique trying to meet all these features is presented and ex-
plained for the first time with full detail in this paper, although its
utilization has been mentioned in previous publications [4, 1]. Fur-
thermore, full evidence of the implementation of the technique as
well as a demonstration of its accuracy is available in the form of
a Matlab command M-file included in a Web page that completes
this paper: http://www.inescn.pt/�ajf/waspaa01/accurate.html.

2. THE ANALYSIS FRAMEWORK

The basic analysis framework is the MDCT filter bank whose im-
plementation has been reformulated in order to meet two objec-
tives:

� given that we want to extract phase information, a complex
transform must be computed instead a real transform,

� for efficiency reasons, we want to avoid the computational
cost of two parallel analysis filter banks as it happens in the
MPEG Audio standard.

A compromise has been reached by identifying an intermediary
step involved in the computation of the MDCT that serves both
objectives. In fact, assuming that � is an even number, the real
coefficients of the MDCT analysis filter bank are obtained as [1]:
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where �� � �
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, ���� is the input signal, 	��� is the time

analysis window whose length is � , and � is the coefficient index.
We take 
 � � � �

�
� � since for ���� and 	��� real, 
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� �� � �� ��. It can be shown [1] that:
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and 
���� represents the co-

efficients of the (complex) Odd-DFT transform (ODFT), which is
defined as:
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It should be noted that for ���� and 	��� real,
���� � 
�
����

� � ��, where � denotes complex conjugation. Throughout this
paper we will consider:
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as the time analysis window. This window is simply the square
root of a Hanning window [4] and is commonly used in audio cod-
ing since it satisfies the perfect reconstruction requirement of the
MDCT filter bank [2]. In addition, it is also very convenient given
that it leads to analytically tractable results as we will show next.

As an interesting property, it can be shown [1] that the magni-
tude of the MDCT coefficients are upper-bounded by the magni-
tude of the ODFT coefficients:
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where 
��� is defined as above and �
���� represents the phase
of the ��	 ODFT coefficient. This result corroborates the fact that
the ODFT frequency domain is more appropriate to implement the
estimation of sinusoidal components than the MDCT frequency
domain. Thus, our basic analysis framework consists of the sine
window (5) and of the ODFT transform, as illustrated in Figure 1.
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Figure 1: Sinusoidal estimation is performed in the ODFT domain
which also leads to the MDCT domain.

The way a sinusoid can be detected within this analysis frame-
work can be better understood by first reviewing the frequency
response ���� of the sine window and the implication of its mod-
ulation to the center frequency of each ODFT subband. ���� is
obtained as ���� �

����
��� 	����

��
� which, besides a linear
phase factor given by ���
�������, leads to:
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���� has zeros at � � �
�
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�
, with � integer, and has two poles

at � � �
�

and � � � �
�

. Clearly, these poles are cancelled out by
the two zeros at the same frequencies. The normalized magnitude

of ����, which we represent as 	�����	, can be obtained as:��
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and is illustrated in Figure 2.

This illustration reveals that 	�����	 is low-pass, that the width
of the main lobe (i.e., of the pass-band) is ���� , and that the
envelope of the stop-band is monotonously decreasing and exhibits
zeros at � � 
 � �

�
� � ��

�

�
, � � �� �� �� � � � .

Each channel of the ODFT filter bank is obtained by modulat-
ing���� to the discrete center frequencies � �

�
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, with
� � 
� �� � � � � � � � . An illustration of this modulation is pre-
sented in Figure 3, where a sinusoid, whose frequency is � � ��

�
,

is also represented.
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Figure 2: Normalized frequency response of the analysis window.
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Figure 3: Illustration of the frequency responses of the first four
channels of the ODFT filter bank.

It can be concluded that as the ODFT channel separation is
���� , the zeros of all modulated functions will occur at frequen-
cies that are a multiple integer of ���� . As a consequence, a si-
nusoid whose frequency is � � ��

�
�, with � integer, will be “seen”

by the frequency responses of two ODFT channels whose indexes
are �� � and �.

A sinusoid whose frequency is not just discrete (on the “bin”
frequency scale) but generally given by � � ��

�
���	�� with

� � � � �
�
�� and 
�
 � 	� � ��
, will therefore be represented

by at least two subbands below the Nyquist frequency. If fact,
four possibilities relating the magnitudes of subband channels with
indexes � � �, �, and � � � may occur that are of interest for the
purpose of accurate frequency estimation. These possibilities are
illustrated in Figure 4 and concern two particular values for 	�
and two particular ranges for 	�.

It can be concluded from this figure that except for 	� � 
�
,
the magnitude of subband �will be a local maximum, which means
the value of � can be directly and easily extracted from the ODFT
spectrum. On the other hand, it can also be concluded that the
relative magnitudes of subbands � � � and � � � can be used to
estimate the fractional frequency 	�.
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Figure 4: Relation between the magnitudes of the ODFT channels
� � �, �, and � � � when the input signal is a sinusoid whose
frequency is given by��

�
���	��.

Since we want to obtain an accurate estimate, we rule out ap-
proximation methods such as the “quadratic fit” that do not take
into consideration the specificity of the analysis window [3].

3. FREQUENCY ESTIMATION

Assuming stationary conditions, a sinusoidal signal will be pro-
jected in different subbands as a function of two parameters:

1. the exact frequency distance between the frequency of the
sinusoid and the center frequency of each ODFT subband:
��
�

���	��� ��
�
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� � �

�

�
, and

2. the shape of the frequency response of the time analysis
window 	����	.

The signal magnitude at each subband of the ODFT filter bank is
therefore expressed as a function of

��� �
��
�
���	�� � � �

�
�
���.

Given that the magnitude of the signal in subband � � � is a local
maximum, 	� may be determined by computing the ratio of the
magnitudes of the signal in subbands � � ��� and � � ��� i.e.,
by evaluating:
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and extracting the unknown 	�. In order to circumvent the analyt-
ical complexity of 	����	, and given that (9) depends only on the
shape of the main lobe of 	����	, we will instead consider a sim-

ple function for a model approximating the main lobe of 	�����	
and allowing tractable results. We have concluded [1] that a con-
venient function is:
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where � is a real constant. This function is depicted in Figure 5.
Using this simplified model, expression (9) simplifies to:
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Figure 5: Normalized magnitude of the frequency response of
	����	 (dotted) and simplified model of the main lobe (solid).
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from which we can derive:

	� � �

�
��
���

�
�

� � �


�
�������
�
�������

���� � (12)

The constant � in this expression has been adjusted to ������
�

in order to minimize the maximum absolute error of the estima-
tion. As it is experimentally demonstrated by means of a Matlab
command M-file which is available in the Web page indicated pre-
viously, the maximum absolute error of the estimation is less than
1% of the bin width and is essentially independent of N, of the
frequency bin of the ODFT (i.e.,of �), of the magnitude A and of
the initial phase �. This result compares favorably to other tech-
niques namely the “quadratic fit” whose associated error has been
reported to be as high as 5,7% of the bin width [3].

4. PHASE ESTIMATION

The estimation in the ODFT frequency domain of the phase and
magnitude of a stationary sinusoidal signal depends firstly on the
accurate estimation of ���	��. Regarding phase estimation and in
order to derive the appropriate expression, it is necessary to obtain
first the analytical expression for 
���� as a result of the ODFT
transformation (4) of a sinusoidal signal of the form (1). After
some analytical work and considering only the ODFT spectrum
below the Nyquist frequency, the expression for 
���� results as:
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where we have considered:


 ��� � ��
���
� ��������

�� 
�������
� (14)

It is a simple matter to conclude that in the case of 	� � 
�
,
expression (13) simplifies further to:
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which reveals that when 	� � 
�
:

� the fixed phase � can be obtained either from �
��� �
�� by adding ������, or from �
���� by adding � �
������,

� the phase difference �
���� � �
��� � �� is exactly
�� �

�
� ��, regardless of the value of �.

When 	� �� 
�
 and taking in consideration that 
 ��� � �� �
���, two relevant phase expressions are obtained as:
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These expressions reveal that when 	� �� 
�
:

� a new phase term appears [1, page 222] that must be taken
into account in order to extract correctly the fixed phase �
from either �
���� �� or �
����,

� the phase difference �
���� � �
��� � �� is exactly
�� �

�
� ��, regardless of the value of � and 	�.

As expressions (16) and (17) are exact, their accuracy when es-
timating the fixed phase � is limited by the accuracy of the 	�
estimate. The demonstration Matlab M-file indicated previously
shows that indeed this is so by exhibiting a maximum relative es-
timation error that is less than 1%, when � varies in the range
�� �� ��.

5. MAGNITUDE ESTIMATION

The estimation of the magnitude makes use of the model (10) ap-

proximating the pass-band of 	�����	, as already considered for
the estimation of 	�, with a subtle difference: while in this lat-
ter case the approximation covers all the width of the main lobe of

	�����	, (i.e.,���� ), in the former case, the approximation covers

only a fraction of the width of the main lobe of 	�����	. In fact,
once 	� is known, the magnitude of 
����, which corresponds
to a local maximum, can be used to estimate A, on the following
grounds:

� if 	� � 
�
, using (15), we obtain 	
����	 � ����
�

,

� if 
�
 � 	� � ��
, as suggested by Figure 3 and using the
above model, we obtain
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Therefore, A is readly extracted by using:
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This result reveals that for the purpose of magnitude estimation,
the approximation model (10) is only used in the range ��

�
�

� � �
�

which suggests the optimal value of the constant � is not
necessarily equal to the value of � as used in (12). This is in fact
demonstrated by the Matlab M-file which shows that the relative
magnitude estimation error is minimized and always inferior to
1% when � � ���
��
�
. This error varies with 	� and does not
depend on the values of � or �.

6. TIME MODULATED SINUSOIDS

When a sinusoid is time modulated, the previous analysis and re-
sults must be extended to a more general form. Tractable expres-
sions may still be found when modulation by a real exponential
function is considered [1]. The main conclusions in this case are:

� frequency estimation may still be implemented using (12)
but the estimation error may increase till about 20% of the
bin width when the sinusoid is severely time modulated and
when 	� is close to 
�
 or ��
,

� phase estimation should be implemented using only (17)
since the values of�
������ and�
������ are stongly
influenced by the increasing or decreasing nature of the
time modulation, as well as by the degree of the time mod-
ulation.

These effects are illustrated in the Web page http://www.inescn.pt/
�ajf/waspaa01/accurate.html.

7. CONCLUSIONS

A technique based on the ODFT filter bank has been presented
and detailed that allows the accurate estimation of the frequency,
phase and magnitude of stationary sinusoids. Its implementation
and accuracy have been illustrated by means of a demonstration
Matlab file that is available on the Internet.
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